Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production
نویسندگان
چکیده
Due to the growing need to provide alternatives to fossil fuels as efficiently, economically, and sustainably as possible there has been growing interest in improved biofuel production systems. Biofuels produced from microalgae are a particularly attractive option since microalgae have production potentials that exceed the best terrestrial crops by 2 to 10-fold. In addition, autotrophically grown microalgae can capture CO2 from point sources reducing direct atmospheric greenhouse gas emissions. The enhanced biomass production potential of algae is attributed in part to the fact that every cell is photosynthetic. Regardless, overall biological energy capture, conversion, and storage in microalgae are inefficient with less than 8% conversion of solar into chemical energy achieved. In this review, we examine the thermodynamic and kinetic constraints associated with the autotrophic conversion of inorganic carbon into storage carbohydrate and oil, the dominant energy storage products in Chlorophytic microalgae. We discuss how thermodynamic restrictions including the loss of fixed carbon during acetyl CoA synthesis reduce the efficiency of carbon accumulation in lipids. In addition, kinetic limitations, such as the coupling of proton to electron transfer during plastoquinone reduction and oxidation and the slow rates of CO2 fixation by Rubisco reduce photosynthetic efficiency. In some cases, these kinetic limitations have been overcome by massive increases in the numbers of effective catalytic sites, e.g. the high Rubisco levels (mM) in chloroplasts. But in other cases, including the slow rate of plastoquinol oxidation, there has been no compensatory increase in the abundance of catalytically limiting protein complexes. Significantly, we show that the energetic requirements for producing oil and starch relative to the recoverable energy stored in these molecules are very similar on a per carbon basis. Presently, the overall rates of starch and lipid synthesis in microalgae are very poorly characterized. Increased understanding of the kinetic constraints of lipid and starch synthesis, accumulation and turnover would facilitate the design of improved biomass production systems.
منابع مشابه
Effects of salinity on growth and fatty acid composition of green microalgae Dunaliella bardawil as a candidate source for biofuel production
Microalgae as a source of saturated and unsaturated fatty acids, pigments, pharmaceutical and food metabolites, has received more focus by biological researchers at last decades. The amount and composition of fatty acids produced by microalgae depended on biomass production and environmental factors such as changes in salinity, light and nutrient availability. In this study, the green microalga...
متن کاملOptimization of light conditions by affecting the growth and production of C-Phycocyanin in Spirulina platensis microalgae
Spirulina microalgae are a rich source of protein and valuable biological compounds. One of the most important Spirulina microalgae pigments is phycocyanin. Phycocyanin is widely used in industries as a natural blue pigment and it’s also an effective antioxidant. In order to improve phycocyanin production as well as Spirulina growth, by autotrophic cultivation considering that autotrophic culti...
متن کاملSite assessment for industrial mass cultivation of microalgae: case studies from Persian Gulf and Oman Sea coastal areas
Providing enough microalgae biomass is required for various applications in sectors such as food, medicine and energy. The biomass resources such as land, water, nutrient and carbon dioxide are essential in cultivation feasibility study for biomass production as well as cost benefits. The aims of this research is therefore, site assessment and prioritization of potential site locations, carbon ...
متن کاملتعیین دمای بهینۀ رشد ریزجلبک نانوکلروپسیس اوکولاتا (Nannochloropsis oculata) برای تولید سوخت سبز (بیودیزل)
One of the promising sources for biodiesel production and lowering energy crisis is microalgae lipid and attracted much attention in recent years. The aim of this study was to investigate the Effect of temperature on the Lipid productivity as factors affecting biodiesel economic performance. Microalgae Nannochloropsis Oculata in Walne medium and seven different temperatures were cultured. Cell ...
متن کاملBook Review: Biofuels from Algae: A Promising Future Fuel
provides in-depth information on various strategies and large-scale cultivation of algal biomass with updated state-of-art information and knowledge by the internationally recognized experts and subject peers in various areas of algal biofuels. Algae biofuel (Chisti, 2007) has been currently recognized as the alternative and clean energy source that attracted the interests of many researchers a...
متن کامل